福建高职招考数学考试大纲(面向普通高中)(二)
|来源:新高考网
,了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。
④知道指数函数是一类重要的函数模型。
3.对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。
③知道对数函数是一类重要的函数模型。
④了解指数函数与对数函数互为反函数(a>0,且a≠1)。
4.幂函数
①了解幂函数的概念。
②结合函数的图像,了解它们的变化情况。
5.函数与方程
①结合二次函数的图像,了解函数的零点与方程根的联系,会判断一元二次方程实根的存在性及实根的个数。
②根据具体函数的图像,能够用二分法求相应方程的近似解。
6.函数模型及其应用
①了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
(三)立体几何初步
1.空间几何体
①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。
③了解平行投影与中心投影,了解空间图形的不同表示形式。
④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
2.点、直线、平面之间的位置关系
①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内。
◆公理2:过不在同一条直线上的三点,有且只有一个平面。
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
◆公理4:平行于同一条直线的两条直线互相平行。
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。
理解以下判定定理。
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行。
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
理解以下性质定理。
◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行。
◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行。
◆垂直于同一个平面的两条直线平行。
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。
③能运用公理、定理和已获得的结论推断一些空间位置关系的简单命题。
(四)平面解析几何初步
1.直线与方程
①在平面直角坐标系中,会结合具体图形,确定直线位置的几何要素。
②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
③能根据两条直线的斜率判定这两条直线平行或垂直。
④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
⑤能用解方程组的方法求两直线的交点坐标。
⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
2.圆与方程
①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。
③能用直线和圆的方程解决一些简单的问题。
④初步了解用代数方法处理几何问题的思想。
3.空间直角坐标系
①了解空间直角坐标系,会用空间直角坐标表示点的位置。
②会推导空间两点间的距离公式。
(五)统计
1.随机抽样
①理解随机抽样的必要性和重要性。
②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
2.总体估计
①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。
②理解样本数据标准差的意义和作用,会计算数据标准差。
③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释。
④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
3.变量的相关性
①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆线性回归方程系数公式)。
(六)概率
1.事件与概率
①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
②了解两个互斥事件的概率加法公式。
2.古典概型
①理解古典概型及其概率计算公式。
②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
3.随机数与几何概型
①了解随机数的意义,能运用模拟方法估计概率。
②了解几何概型的意义。
(七)基本初等函数Ⅱ(三角函数)
1.任意角的概念、弧度制
①了解任意角的概念。
②了解弧度制概念,能进行弧度与角度的互化。
2.三角函数
①理解任意角三角函数(正弦、余弦、正切)的定义。
②能利用单位圆中的三角函数线推导出的正弦、余弦、正切,及的正弦、余弦的诱导公式,能画出的图像,了解三角函数的周期性。
③理解正弦函数、余弦函数在区间[0,]的性质(如单调性、最大值和最小值、图像与轴交点等);理解正切函数在区间的单调性。
④理解同角三角函数的基本关系式:,。
⑤了解函数的物理意义;能画出的图像,了解参数A,,对函数图像变化的影响。
⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
(八)平面向量
1.平面向量的实际背景及基本概念
①了解向量的实际背景。
②理解平面向量的概念,理解两个向量相等的含义。
③理解向量的几何表示。
2.向量的线性运算
①掌握向量加法、减法的运算,并理解其几何意义。
②掌握向量数乘的运算,并理解其几何意义;理解两个向量共线的含义。
③了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示
①了解平面向量的基本定理及其意义。
②掌握平面向量的正交分解及其坐标表示。
③&nbs
③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。
④知道指数函数是一类重要的函数模型。
3.对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。
③知道对数函数是一类重要的函数模型。
④了解指数函数与对数函数互为反函数(a>0,且a≠1)。
4.幂函数
①了解幂函数的概念。
②结合函数的图像,了解它们的变化情况。
5.函数与方程
①结合二次函数的图像,了解函数的零点与方程根的联系,会判断一元二次方程实根的存在性及实根的个数。
②根据具体函数的图像,能够用二分法求相应方程的近似解。
6.函数模型及其应用
①了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
(三)立体几何初步
1.空间几何体
①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。
③了解平行投影与中心投影,了解空间图形的不同表示形式。
④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
2.点、直线、平面之间的位置关系
①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内。
◆公理2:过不在同一条直线上的三点,有且只有一个平面。
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
◆公理4:平行于同一条直线的两条直线互相平行。
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。
理解以下判定定理。
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行。
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。
理解以下性质定理。
◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行。
◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行。
◆垂直于同一个平面的两条直线平行。
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。
③能运用公理、定理和已获得的结论推断一些空间位置关系的简单命题。
(四)平面解析几何初步
1.直线与方程
①在平面直角坐标系中,会结合具体图形,确定直线位置的几何要素。
②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
③能根据两条直线的斜率判定这两条直线平行或垂直。
④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
⑤能用解方程组的方法求两直线的交点坐标。
⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
2.圆与方程
①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。
③能用直线和圆的方程解决一些简单的问题。
④初步了解用代数方法处理几何问题的思想。
3.空间直角坐标系
①了解空间直角坐标系,会用空间直角坐标表示点的位置。
②会推导空间两点间的距离公式。
(五)统计
1.随机抽样
①理解随机抽样的必要性和重要性。
②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
2.总体估计
①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。
②理解样本数据标准差的意义和作用,会计算数据标准差。
③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释。
④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
3.变量的相关性
①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆线性回归方程系数公式)。
(六)概率
1.事件与概率
①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
②了解两个互斥事件的概率加法公式。
2.古典概型
①理解古典概型及其概率计算公式。
②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
3.随机数与几何概型
①了解随机数的意义,能运用模拟方法估计概率。
②了解几何概型的意义。
(七)基本初等函数Ⅱ(三角函数)
1.任意角的概念、弧度制
①了解任意角的概念。
②了解弧度制概念,能进行弧度与角度的互化。
2.三角函数
①理解任意角三角函数(正弦、余弦、正切)的定义。
②能利用单位圆中的三角函数线推导出的正弦、余弦、正切,及的正弦、余弦的诱导公式,能画出的图像,了解三角函数的周期性。
③理解正弦函数、余弦函数在区间[0,]的性质(如单调性、最大值和最小值、图像与轴交点等);理解正切函数在区间的单调性。
④理解同角三角函数的基本关系式:,。
⑤了解函数的物理意义;能画出的图像,了解参数A,,对函数图像变化的影响。
⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
(八)平面向量
1.平面向量的实际背景及基本概念
①了解向量的实际背景。
②理解平面向量的概念,理解两个向量相等的含义。
③理解向量的几何表示。
2.向量的线性运算
①掌握向量加法、减法的运算,并理解其几何意义。
②掌握向量数乘的运算,并理解其几何意义;理解两个向量共线的含义。
③了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示
①了解平面向量的基本定理及其意义。
②掌握平面向量的正交分解及其坐标表示。
③&nbs